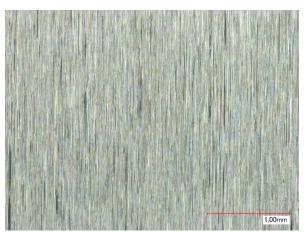
IMA-TechSheet #104170 V1


Beschreibung:

Die Oberflächenbeschaffenheit einer Dichtungsgegenlauffläche beeinflusst das tribologische System "Radial-Wellendichtung" in erheblichem Maße. Zu glatte Dichtungsgegenlaufflächen führen zu einem schlechten Einlaufverhalten des Radial-Wellendichtringes und verhindern den benötigten Schmierfilmaufbau im Dichtkontakt. Hierdurch kann es zu hohen Übertemperaturen kommen, wodurch die Systemkomponenten thermisch geschädigt werden. Zu raue Dichtungsgegenlaufflächen können hingegen zu einem erhöhten Verschleiß der Systemkomponenten führen.

Darüber hinaus können förderaktive Oberflächenstrukturen (Drall) das abzudichtende Fluid in Achsrichtung umlenken und dadurch Leckage oder Mangelschmierung verursachen.

Optimal zur Abdichtung geeignete Dichtungsgegenlaufflächen werden drall-frei mit rotierender Schleifscheibe im Einstich geschliffen. Sie weisen eine gleichmäßige Oberflächenstruktur mit definierter Rauheit und mit stochastisch verteilten und im Mittel in Umfangsrichtung orientierten Schleifriefen (kein Mikrodrall) auf. Zudem darf keine erkennbare Periodizität in Achs- und Umfangrichtung der Oberfläche vorhanden sein (kein Makrodrall).

Die Einhaltung der nachfolgenden Spezifikationen führen in der Regel zu geeigneten Dichtungsgegenlaufflächen. Auf den nachfolgenden Seiten sind darüber hinaus Messprotokolle einer optimalen Dichtungsgegenlauffläche dargestellt.

Mikroskopbild einer einstichgeschliffenen Dichtungsgegenlauffläche

DIN-Spezifikationen:

Rauheit:

Rz	1 5	μm
Ra	0,2 0,8	μm
Rmax	< 6,3	μm

IMA-Spezifikationen:

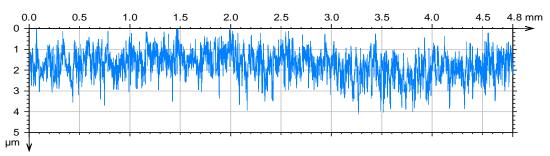
Rauheit:

Rz	2,5 5	μm
Ra	0,4 0,7	μm
Rmax	< 6,3	μm
W_{t}	< 1,0	μm
$W_{t,10}$	< 1,3	μm

Makrodrall MBN31007-7:

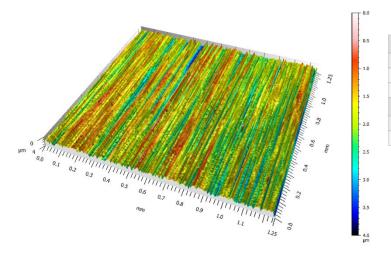
Beide Messraster (360°/36°) müssen gemessen werden und sollten übereinstimmende Ergebnisse anzeigen.

DP	> 0,15	mm
1:	$DG = 0, D_t < 0.4$	μm
2:	$DG \neq 0$; $D_t < 0.2$	μm


IMA-Mikrodrall®Analyse:

$Sd_{median,S}$	0±0,05	0
$Sd_{median,V}$	0±0,05	0
SdStd	> 0.3	0

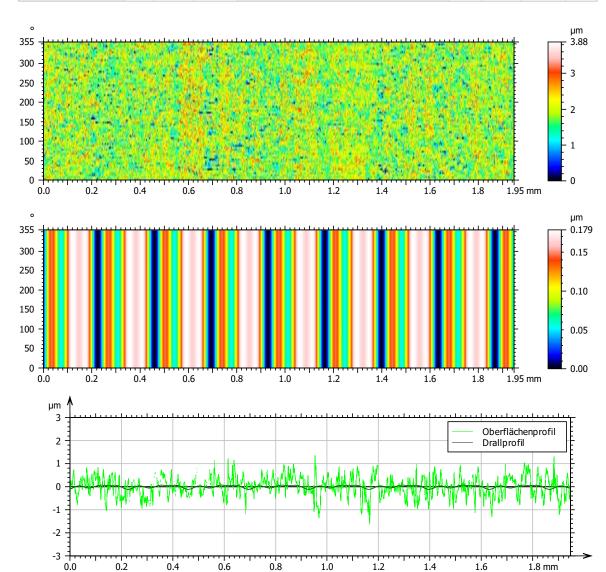
IMA-TechSheet #104170 V1



2D-Rauheit:

		Kontext	Kontext Mittelwert StdAbw.		Min	Max
ISO 4287						
Amplitude	n-Param	eter - Rauheitsprofil				
Ra	μm	Gauß-Filter, 0.8 mm	0.435	0.0147	0.406	0.453
Rz	μm	Gauß-Filter, 0.8 mm	3.70	0.0974	3.55	3.86
Rt	μm	Gauß-Filter, 0.8 mm	4.21	0.189	3.99	4.56
Amplitude	n-Param	eter - Welligkeitsprofil				
Wt	μm	Gauß-Filter, 0.8 mm	0.803	0.0781	0.696	0.932
Andere 2	D-Para	meter				
Rauheitspr	ofil-Para	ameter				
Rmax	μm	Gauß-Filter, 0.8 mm	4.04	0.150	3.85	4.30

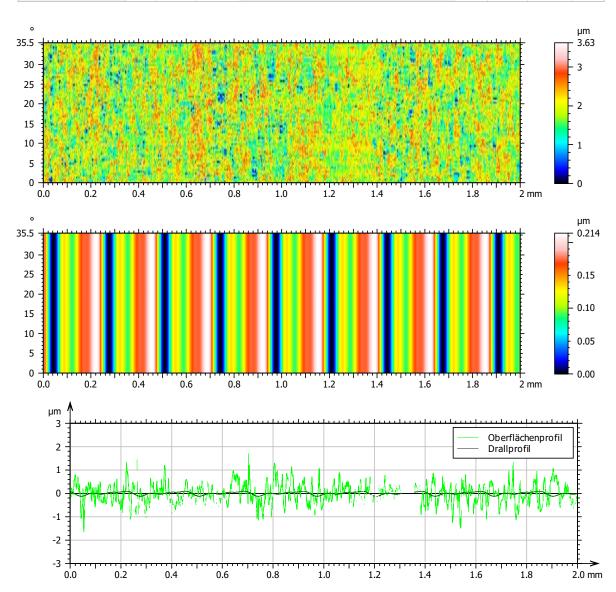
3D-Rauheit:


ISO 25178		
Höhen-Parame	ter	
Sa	0.432	μm
Sz	4.03	μm
Addon		
Addon Family II	MA	
Sz_IMA	3.83	μm

IMA-TechSheet #104170 V1

Messprotokoll Makrodrall 360° Messraster:

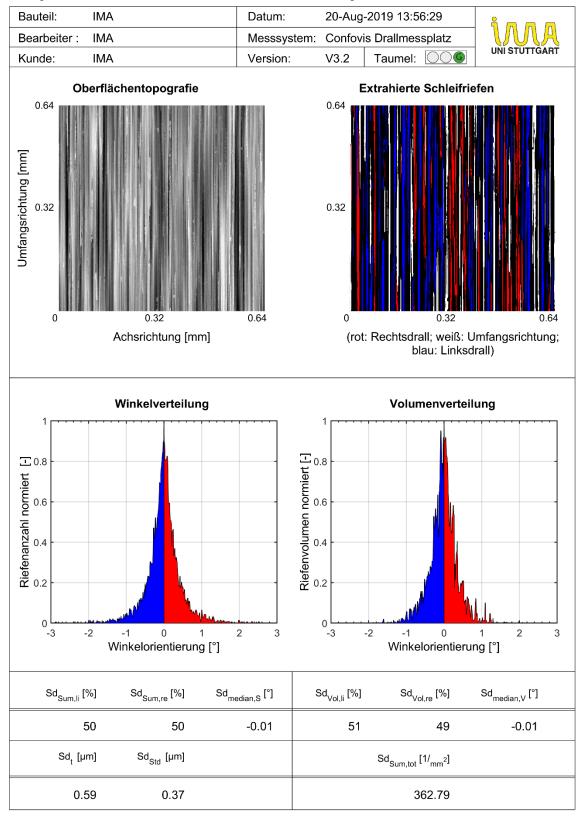
Parameter		Wert	Einheit	Parameter		Wert	Einheit	
Durchmesser		65.0	mm	Perio d'enlänge	DP	0.234	mm	
Messstredke		2.00	mm	Theoretischer Förderquerschnitt	DF	15.4	μm²	
Maximale Wellenlänge		0.400	mm	Theoretischer Förderquerschnitt pro Umdrehung	DFu	0.00	μm²/U	
Gängigkeit	DG	0.00		Prozentuale Auflag elänge	DLu	100	%	
Dralltiefe	Dt	0.179	μm	Drallwinkel	Dγ	0.00	0	



Universität Stuttgart Institut für Maschinenelemente

IMA-TechSheet #104170 V1

Messprotokoll Makrodrall 36° Messraster:


Parameter		Wert	Einheit	Parameter		Wert	Einheit
Durchmesser		65.0	mm	Periodenlänge	DP	0.233	mm
Messstrecke		2.00	mm	Theoretischer Förderquerschnitt	DF	20.9	μm²
Maximale Wellenlänge		0.400	mm	Theoretischer Förderquerschnitt pro Umdrehung	DFu	0.00	μm²/U
Gängigkeit	DG	0.00		Prozentuale Auflagelänge	DLu	100	%
Dralltiefe	Dt	0.214	μm	Drallwinkel	Dγ	0.00	0

IMA-TechSheet #104170 V1

Messprotokoll IMA-Mikrodrall®Analyse:

