IMA - Seal Observer ®

This device allows to inspect, to measure and to illuminate the inner side of seal rings.

Seal rings can be easily positioned and are reproducibly illuminated for precise photo documentation.

Converts any microscope (not included) into an unique sealing edge inspection tool.
Working principle

- the beam path is deflected by a prism, so the inner surface of a seal ring can be inspected without the need to cut it open.

- the seal ring can be tilted which allows to adjust the sealing edge perpendicular to the beam path. Therefore there are no problems with shallow depth of field at high magnifications and correct determination of the contact width is guaranteed.

- once adjusted the unique design of the Seal Observer keeps the sealing edge in focus while tilting or rotating, so the whole seal ring can be inspected accurate and fast.
Adjustable to seal diameter

ø35mm seal ring from Flender Test

positioning pins allow to rotate the ring while staying in focus

ø155mm seal ring

Light Control

• the LED array can be individually controlled in 6 sectors
• white light LED (6500K) with a CRI >90 allow high color accuracy
• adjustable settings give the same results again and again
Benefit from the measurement device development driven by the research activities at the sealing technology group at Institute of Machine Components of University of Stuttgart

Technical Data

IMA-Seal Observer ®

- **smallest seal inner diameter**: ø35 mm
- **biggest seal inner diameter**: ø200 mm
- **tilting range**: ± 45°
- **height adjustment**: 25 mm
- **required working distance of microscope**: 25 mm
- **LED illumination**: 6500K, CRI 90
- **6 individual controllable LED segments**
- **power supply**: 230 V / 110 V
- **material**: anodised aluminium
- **dimensions (H x W x D)**: 150 x 250 x 330 mm
- **weight**: 4 kg
- **no microscope included**

Contact / Sales:

Universität Stuttgart
Institut für Maschinenelemente (IMA)
Pfaffenwaldring 9
70569 Stuttgart
Germany

Tel: +49 711 685-66170
Mail: dicht@ima.uni-stuttgart.de

IMA-TechSheet #102070 V2